

한국과학기술원 NCS 기반 직무기술서

채용분야	연구직 (연수연구원)	분류체계	대분류	중분류	소분류	세분류
			19. 전기·전자	03. 전자기기 개발	10. 광기술 개발	01. 광부품 개발 06. 광센서기기 개발
설립이념	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원					
KAIST 주요사업	○ Education: 창의적 인재 육성, 융합교육 강화, 글로벌 과학기술 리더 양성, 교육인적 역량 강화 ○ Research: 우수 연구 과제 발굴 지원, 특성화된 연구인력 확보, 창업문화 선진화, 고부가가치 지적재산권 창출 및 기술이전/사업화 촉진, 선도적 대형과제 발굴 ○ Cooperation: 국제적 수준의 근무 환경 조성, 글로벌 리더십을 위한 다양한 협력 ○ Administration: 외국인 학생·교원 대상 행정·기술 서비스 제공(Bi-lingual Campus 운영 지원)					
성장 동력	○ Vision: 글로벌 가치창출 세계 선도대학(Global Value-Creative World-Leading University) - 지식창조형 글로벌 융합인재 양성 허브 (Hub for Fostering Knowledge Creation and Global Convergence Talents) - 세계적 신지식 신기술 창출 진원지(Center for the World-Leading New Knowledge and Technology) ○ 5대 혁신: 교육혁신, 연구혁신, 기술사업화혁신, 국제화혁신, 미래전략혁신 ○ 3C Leadership: Change(변화), Communication(소통), Care(돌봄)					
담당 업무	○ 2차원 매질의 자기광학적 물리 현상에 대한 실험적 측정과 분석 ○ 원자적 두께의 2차원 공간 내 광학적 상태밀도를 제어하고 자기광학적 현상을 증대할 수 있는 공진기 설계, 분석, 제작					
직무수행 내용	○ 미세광량, 초고해상도 자기광학 측정시스템 구축, 운용 ○ 2차원 매질 결합 자기광학적 나노광학소자 제작 ○ 제작된 소자와 자기광학적 물리현상 정밀 측정 및 분석 ○ 정밀 측정 결과의 FDTD/FEM 시뮬레이션 기반 이론적 분석					
필요지식	○ 물리학 및 재료공학 전문 지식 ○ 나노광학 및 양자광학 전문 지식					
필요기술	○ 나노광학소자 제작 기술 ○ 2차원 매질 취급 기술 ○ 초미세 광량(단광자 수준), 초고해상도 자기광학 측정시스템 구축, 운용 기술 ○ FDTD/FEM 시뮬레이션 기술					
직무수행태도	○ 성실○ 근면					
직업기초능력	○ 물리학, 광학, 재료공학 분야 실험 능력					
참고사이트	www.ncs.go.kr, www.kaist.ac.kr					